Essential Question How are the angle measures of a triangle related?

EXPLORATION 1 Writing a Conjecture

Work with a partner.

a. Use dynamic geometry software to draw any triangle and label it \(\triangle ABC \).

b. Find the measures of the interior angles of the triangle.

c. Find the sum of the interior angle measures.

d. Repeat parts (a)–(c) with several other triangles. Then write a conjecture about the sum of the measures of the interior angles of a triangle.

Sample

<table>
<thead>
<tr>
<th>Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m\angle A = 43.67^\circ)</td>
</tr>
<tr>
<td>(m\angle B = 81.87^\circ)</td>
</tr>
<tr>
<td>(m\angle C = 54.46^\circ)</td>
</tr>
</tbody>
</table>

EXPLORATION 2 Writing a Conjecture

Work with a partner.

a. Use dynamic geometry software to draw any triangle and label it \(\triangle ABC \).

b. Draw an exterior angle at any vertex and find its measure.

c. Find the measures of the two nonadjacent interior angles of the triangle.

d. Find the sum of the measures of the two nonadjacent interior angles. Compare this sum to the measure of the exterior angle.

e. Repeat parts (a)–(d) with several other triangles. Then write a conjecture that compares the measure of an exterior angle with the sum of the measures of the two nonadjacent interior angles.

Sample

<table>
<thead>
<tr>
<th>Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m\angle A = 43.67^\circ)</td>
</tr>
<tr>
<td>(m\angle B = 81.87^\circ)</td>
</tr>
<tr>
<td>(m\angle ACD = 125.54^\circ)</td>
</tr>
</tbody>
</table>

Communicate Your Answer

3. How are the angle measures of a triangle related?

4. An exterior angle of a triangle measures 32°. What do you know about the measures of the interior angles? Explain your reasoning.
5.1 Lesson

What You Will Learn

- Classify triangles by sides and angles.
- Find interior and exterior angle measures of triangles.

Classifying Triangles by Sides and by Angles

Recall that a triangle is a polygon with three sides. You can classify triangles by sides and by angles, as shown below.

Core Vocabulary

interior angles, p. 233
exterior angles, p. 233
corollary to a theorem, p. 235

Previous triangle

Core Concept

Classifying Triangles by Sides

<table>
<thead>
<tr>
<th>Scalene Triangle</th>
<th>Isosceles Triangle</th>
<th>Equilateral Triangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>no congruent sides</td>
<td>at least 2 congruent sides</td>
<td>3 congruent sides</td>
</tr>
</tbody>
</table>

Classifying Triangles by Angles

<table>
<thead>
<tr>
<th>Acute Triangle</th>
<th>Right Triangle</th>
<th>Obtuse Triangle</th>
<th>Equiangular Triangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 acute angles</td>
<td>1 right angle</td>
<td>1 obtuse angle</td>
<td>3 congruent angles</td>
</tr>
</tbody>
</table>

Reading

Notice that an equilateral triangle is also isosceles. An equiangular triangle is also acute.

Example 1 Classification of Triangles by Sides and by Angles

Classify the triangular shape of the support beams in the diagram by its sides and by measuring its angles.

Solution

The triangle has a pair of congruent sides, so it is isosceles. By measuring, the angles are 55°, 55°, and 70°.

So, it is an acute isosceles triangle.

Monitoring Progress

1. Draw an obtuse isosceles triangle and an acute scalene triangle.
EXAMPLE 2 Classifying a Triangle in the Coordinate Plane

Classify \(\triangle OPQ \) by its sides. Then determine whether it is a right triangle.

\[
\begin{align*}
\text{Step 1} \quad & \text{Use the Distance Formula to find the side lengths.} \\
OP &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(-1 - 0)^2 + (2 - 0)^2} = \sqrt{5} \approx 2.2 \\
OQ &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(6 - 0)^2 + (3 - 0)^2} = \sqrt{45} \approx 6.7 \\
PQ &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(6 - (-1))^2 + (3 - 2)^2} = \sqrt{50} \approx 7.1 \\
\end{align*}
\]

Because no sides are congruent, \(\triangle OPQ \) is a scalene triangle.

\[
\begin{align*}
\text{Step 2} \quad & \text{Check for right angles. The slope of } \overline{OP} \text{ is } \frac{2 - 0}{-1 - 0} = -2. \text{ The slope of } \overline{OQ} \\
& \text{is } \frac{3 - 0}{6 - 0} = \frac{1}{2}. \text{ The product of the slopes is } -2 \left(\frac{1}{2} \right) = -1. \text{ So, } \overline{OP} \perp \overline{OQ} \text{ and } \\
\angle POQ \text{ is a right angle.} \\
\end{align*}
\]

So, \(\triangle OPQ \) is a right scalene triangle.

Monitoring Progress Help in English and Spanish at BigIdeasMath.com

2. \(\triangle ABC \) has vertices \(A(0, 0), B(3, 3), \) and \(C(-3, 3) \). Classify the triangle by its sides. Then determine whether it is a right triangle.

Finding Angle Measures of Triangles

When the sides of a polygon are extended, other angles are formed. The original angles are the **interior angles**. The angles that form linear pairs with the interior angles are the **exterior angles**.

![Diagram of interior and exterior angles](diagram)

Theorem

![Theorem 5.1: Triangle Sum Theorem](diagram)

Theorem 5.1 Triangle Sum Theorem

The sum of the measures of the interior angles of a triangle is 180°.

Proof p. 234; Ex. 53, p. 238
To prove certain theorems, you may need to add a line, a segment, or a ray to a given diagram. An auxiliary line is used in the proof of the Triangle Sum Theorem.

PROOF
Triangle Sum Theorem

Given
\(\triangle ABC \)

Prove
\(m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ \)

Plan for Proof

a. Draw an auxiliary line through \(B \) that is parallel to \(AC \).

b. Show that \(m\angle 4 + m\angle 2 + m\angle 5 = 180^\circ \), \(\angle 1 \cong \angle 4 \), and \(\angle 3 \cong \angle 5 \).

c. By substitution, \(m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ \).

STATEMENTS	**REASONS**
a. 1. Draw \(\overline{BD} \) parallel to \(\overline{AC} \). | 1. Parallel Postulate (Post. 3.1)
b. 2. \(m\angle 4 + m\angle 2 + m\angle 5 = 180^\circ \) | 2. Angle Addition Postulate (Post. 1.4) and definition of straight angle
3. \(\angle 1 \cong \angle 4 \), \(\angle 3 \cong \angle 5 \) | 3. Alternate Interior Angles Theorem (Thm. 3.2)
c. 4. \(m\angle 1 = m\angle 4 \), \(m\angle 3 = m\angle 5 \) | 4. Definition of congruent angles
5. \(m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ \) | 5. Substitution Property of Equality

**Theorem 5.2 **
Exterior Angle Theorem

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two nonadjacent interior angles.

Proof
Ex. 42, p. 237

\(m\angle 1 = m\angle A + m\angle B \)

EXAMPLE 3
Finding an Angle Measure

Find \(m\angle JKM \).

SOLUTION

Step 1 Write and solve an equation to find the value of \(x \).

\[
(2x - 5)^\circ = 70^\circ + x^\circ
\]

\[
x = 75
\]

Apply the Exterior Angle Theorem.
Solve for \(x \).

Step 2 Substitute 75 for \(x \) in \(2x - 5 \) to find \(m\angle JKM \).

\[
2x - 5 = 2 \cdot 75 - 5 = 145
\]

So, the measure of \(\angle JKM \) is \(145^\circ \).
Section 5.1
Angles of Triangles

A **corollary to a theorem** is a statement that can be proved easily using the theorem. The corollary below follows from the Triangle Sum Theorem.

Corollary

Corollary 5.1 **Corollary to the Triangle Sum Theorem**

The acute angles of a right triangle are complementary.

Proof Ex. 41, p. 237

EXAMPLE 4 **Modeling with Mathematics**

In the painting, the red triangle is a right triangle. The measure of one acute angle in the triangle is twice the measure of the other. Find the measure of each acute angle.

SOLUTION

1. **Understand the Problem** You are given a right triangle and the relationship between the two acute angles in the triangle. You need to find the measure of each acute angle.

2. **Make a Plan** First, sketch a diagram of the situation. You can use the Corollary to the Triangle Sum Theorem and the given relationship between the two acute angles to write and solve an equation to find the measure of each acute angle.

3. **Solve the Problem** Let the measure of the smaller acute angle be \(x^\circ\). Then the measure of the larger acute angle is \(2x^\circ\). The Corollary to the Triangle Sum Theorem states that the acute angles of a right triangle are complementary. Use the corollary to set up and solve an equation.

\[
\begin{align*}
x^\circ + 2x^\circ &= 90^\circ & \text{Corollary to the Triangle Sum Theorem} \\
x &= 30 & \text{Solve for } x.
\end{align*}
\]

So, the measures of the acute angles are 30° and \(2(30^\circ) = 60^\circ\).

4. **Look Back** Add the two angles and check that their sum satisfies the Corollary to the Triangle Sum Theorem.

\[
30^\circ + 60^\circ = 90^\circ \checkmark
\]

Monitoring Progress

3. Find the measure of \(\angle 1\).

4. Find the measure of each acute angle.
In Exercises 3–6, classify the triangle by its sides and by measuring its angles. (See Example 1.)

3. $\triangle XYZ$

4. $\triangle LMN$

5. $\triangle JKH$

6. $\triangle ABC$

In Exercises 7–10, classify $\triangle ABC$ by its sides. Then determine whether it is a right triangle. (See Example 2.)

7. $A(2, 3), B(6, 3), C(2, 7)$

8. $A(3, 3), B(6, 9), C(6, -3)$

9. $A(1, 9), B(4, 8), C(2, 5)$

10. $A(-2, 3), B(0, -3), C(3, -2)$

In Exercises 11–14, find $m\angle 1$. Then classify the triangle by its angles.

11. $\triangle ABC$

12. $\triangle ABC$

13. $\triangle ABC$

14. $\triangle ABC$

In Exercises 15–18, find the measure of the exterior angle. (See Example 3.)

15. $\triangle ABC$

16. $\triangle ABC$

17. $\triangle ABC$

18. $\triangle ABC$

In Exercises 19–22, find the measure of each acute angle. (See Example 4.)

19. $\triangle ABC$

20. $\triangle ABC$

21. $\triangle ABC$

22. $\triangle ABC$

1. **WRITING** Can a right triangle also be obtuse? Explain your reasoning.

2. **COMPLETE THE SENTENCE** The measure of an exterior angle of a triangle is equal to the sum of the measures of the two ____________ interior angles.
In Exercises 23–26, find the measure of each acute angle in the right triangle. (See Example 4.)

23. The measure of one acute angle is 5 times the measure of the other acute angle.

24. The measure of one acute angle is 8 times the measure of the other acute angle.

25. The measure of one acute angle is 3 times the sum of the measure of the other acute angle and 8.

26. The measure of one acute angle is twice the difference of the measure of the other acute angle and 12.

ERROR ANALYSIS In Exercises 27 and 28, describe and correct the error in finding \(m \angle 1 \).

27. \(115^\circ + 39^\circ + m \angle 1 = 360^\circ \)
 \[154^\circ + m \angle 1 = 360^\circ \]
 \[m \angle 1 = 206^\circ \]
 ✗

28. \(1 \)
 \[80^\circ + 50^\circ + m \angle 1 = 180^\circ \]
 \[m \angle 1 = 50^\circ \]
 ✗

In Exercises 29–36, find the measure of the numbered angle.

29. \(\angle 1 \)
30. \(\angle 2 \)
31. \(\angle 3 \)
32. \(\angle 4 \)
33. \(\angle 5 \)
34. \(\angle 6 \)
35. \(\angle 7 \)
36. \(\angle 8 \)

USING TOOLS Three people are standing on a stage. The distances between the three people are shown in the diagram. Classify the triangle by its sides and by measuring its angles.

USING STRUCTURE Which of the following sets of angle measures could form a triangle? Select all that apply.

- (A) 100°, 50°, 40°
- (B) 96°, 74°, 10°
- (C) 165°, 113°, 82°
- (D) 101°, 41°, 38°
- (E) 90°, 45°, 45°
- (F) 84°, 62°, 34°

MODELING WITH MATHEMATICS You are bending a strip of metal into an isosceles triangle for a sculpture. The strip of metal is 20 inches long. The first bend is made 6 inches from one end. Describe two ways you could complete the triangle.

THOUGHT PROVOKING Find and draw an object (or part of an object) that can be modeled by a triangle and an exterior angle. Describe the relationship between the interior angles of the triangle and the exterior angle in terms of the object.

PROVING A COROLLARY Prove the Corollary to the Triangle Sum Theorem (Corollary 5.1).

PROVING A THEOREM Prove the Exterior Angle Theorem (Theorem 5.2).
43. **CRITICAL THINKING** Is it possible to draw an obtuse isosceles triangle? obtuse equilateral triangle? If so, provide examples. If not, explain why it is not possible.

44. **CRITICAL THINKING** Is it possible to draw a right isosceles triangle? right equilateral triangle? If so, provide an example. If not, explain why it is not possible.

45. **MATHEMATICAL CONNECTIONS** △ABC is isosceles, \(AB = x \), and \(BC = 2x - 4 \).
 a. Find two possible values for \(x \) when the perimeter of △ABC is 32.
 b. How many possible values are there for \(x \) when the perimeter of △ABC is 12?

46. **HOW DO YOU SEE IT?** Classify the triangles, in as many ways as possible, without finding any measurements.
 a.
 b.
 c.
 d.

47. **ANALYZING RELATIONSHIPS** Which of the following could represent the measures of an exterior angle and two interior angles of a triangle? Select all that apply.
 - A: 100°, 62°, 38°
 - B: 81°, 57°, 24°
 - C: 119°, 68°, 49°
 - D: 95°, 85°, 28°
 - E: 92°, 78°, 68°
 - F: 149°, 101°, 48°

48. **MAKING AN ARGUMENT** Your friend claims the measure of an exterior angle will always be greater than the sum of the nonadjacent interior angle measures. Is your friend correct? Explain your reasoning.

MATHEMATICAL CONNECTIONS In Exercises 49–52, find the values of \(x \) and \(y \).

49.

50.

51.

52.

53. **PROVING A THEOREM** Use the diagram to write a proof of the Triangle Sum Theorem (Theorem 5.1). Your proof should be different from the proof of the Triangle Sum Theorem shown in this lesson.

Maintaining Mathematical Proficiency Reviewing what you learned in previous grades and lessons

54. \(m\angle KHL \)
55. \(m\angle ABC \)
56. \(GH \)
57. \(BC \)